Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 128: 155536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513379

ABSTRACT

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Subject(s)
Apoptosis , Caspase 3 , Caspase 7 , Lung Neoplasms , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Lung Neoplasms/drug therapy , Caspase 3/metabolism , Cell Line, Tumor , Caspase 7/metabolism , Asteraceae/chemistry , Lactones/pharmacology , A549 Cells , Cell Proliferation/drug effects , Sesquiterpenes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Plant Leaves/chemistry , Animals , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364941

ABSTRACT

Leishmaniasis is a group of infectious diseases caused by protozoa of the Leishmania genus and its immunopathogenesis results from an unbalanced immune response during the infection. Diabetes is a chronic disease resulting from dysfunction of the body's production of insulin or the ability to use it properly, leading to hyperglycemia causing tissue damage and impairing the immune system. AIMS: The objective of this work was to evaluate the effects of hyperglycemia and diabetes during Leishmania amazonensis infection and how these conditions alter the immune response to the parasite. METHODS: An in vitro hyperglycemic stimulus model using THP-1-derived macrophages and an in vivo experimental diabetes with streptozotocin (STZ) in C57BL/6 mice was employed to investigate the impact of diabetes and hyperglicemia in Leishmania amazonensis infection. RESULTS: We observed that hyperglycemia impair the leishmanicidal capacity of macrophages derived from THP-1 cells and reverse the resistance profile that C57BL/6 mice have against infection by L. amazonensis, inducing more exacerbated lesions compared to non-diabetic animals. In addition, the hyperglycemic stimulus favored the increase of markers related to the phenotype of M2 macrophages. The induction of experimental diabetes in C57BL/6 mice resulted in a failure in the production of nitric oxide (NO) in the face of infection and macrophages from diabetic animals failed to process and present Leishmania antigens, being unable to activate and induce proliferation of antigen-specific lymphocytes. CONCLUSION: Together, these data demonstrate that diabetes and hyperglycemia can impair the cellular immune response, mainly of macrophages, against infection by parasites of the genus Leishmania.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Leishmania , Leishmaniasis , Animals , Mice , Mice, Inbred C57BL , Leishmaniasis/complications , Leishmaniasis/parasitology , Leishmania/physiology , Macrophages , Hyperglycemia/complications , Immunity
3.
Biomed Pharmacother ; 170: 115979, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061138

ABSTRACT

Lung cancer is one of the leading causes of cancer-related deaths in men and women worldwide. Current treatments have limited efficacy, cause significant side effects, and cells can develop drug resistance. New therapeutic strategies are needed to discover alternative anticancer agents with high efficacy and low-toxicity. TMBP, a biphenyl obtained by laccase-biotransformation of 2,6-dimethoxyphenol, possesses antitumor activity against A549 adenocarcinoma cells. Without causing damage to sheep erythrocytes and mouse peritoneal macrophages of BALB/c mice. In addition to being classified as a good oral drug according to in-silico studies. This study evaluated the in-vitro cytotoxic effect of TMBP on lung-cancer cell-line NCI-H460 and reports mechanisms on immunomodulation and cell death. TMBP treatment (12.5-200 µM) inhibited cell proliferation at 24, 48, and 72 h. After 24-h treatment, TMBP at IC50 (154 µM) induced various morphological and ultrastructural changes in NCI-H460, reduced migration and immunofluorescence staining of N-cadherin and ß-catenin, induced increased reactive oxygen species and nitric oxide with reduced superoxide radical-anion, increased superoxide dismutase activity and reduced glutathione reductase. Treatment also caused metabolic stress, reduced glucose-uptake, intracellular lactate dehydrogenase and lactate levels, mitochondrial depolarization, increased lipid droplets, and autophagic vacuoles. TMBP induced cell-cycle arrest in the G2/M phase, death by apoptosis, increased caspase-3/7, and reduced STAT-3 immunofluorescence staining. The anticancer effect was accompanied by decreasing PI3K, AKT, ARG-1, and NF-κB levels, and increasing iNOS. These results suggest its potential as a candidate for use in future lung anticancer drug design studies.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Female , Humans , Animals , Mice , Sheep , Lung Neoplasms/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Oxidative Stress , Stress, Physiological
4.
Pathogens ; 12(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37242330

ABSTRACT

American tegumentary leishmaniasis, a zoonotic disease caused by the Leishmania genus, poses significant challenges in treatment, including administration difficulty, low efficacy, and parasite resistance. Novel compounds or associations offer alternative therapies, and natural products such as oregano essential oil (OEO), extracted from Origanum vulgare, have been extensively researched due to biological effects, including antibacterial, antifungal, and antiparasitic properties. Silver nanoparticles (AgNp), a nanomaterial with compelling antimicrobial and antiparasitic activity, have been shown to exhibit potent leishmanicidal properties. We evaluated the in vitro effect of OEO and AgNp-Bio association on L. amazonensis and the death mechanisms of the parasite involved. Our results demonstrated a synergistic antileishmanial effect of OEO + AgNp on promastigote forms and L. amazonensis-infected macrophages, which induced morphological and ultrastructural changes in promastigotes. Subsequently, we investigated the mechanisms underlying parasite death and showed an increase in NO, ROS, mitochondrial depolarization, accumulation of lipid-storage bodies, autophagic vacuoles, phosphatidylserine exposure, and damage to the plasma membrane. Moreover, the association resulted in a reduction in the percentage of infected cells and the number of amastigotes per macrophage. In conclusion, our findings establish that OEO + AgNp elicits a late apoptosis-like mechanism to combat promastigote forms and promotes ROS and NO production in infected macrophages to target intracellular amastigote forms.

5.
Microbes Infect ; 25(7): 105145, 2023.
Article in English | MEDLINE | ID: mdl-37120010

ABSTRACT

Schistosomiasis is a neglected tropical parasitic disease that affects millions of people, being the second most prevalent parasitic disease worldwide. The current treatment has limited effectiveness, drug-resistant strains, and is not effective in different stages of the disease. This study investigated the antischistosomal activity of biogenic silver nanoparticles (Bio-AgNp) against Schistosoma mansoni. Bio-AgNp presented direct schistosomicidal activity on newly transformed schistosomula causing plasma membrane permeabilization. In S. mansoni adult worms, reduced the viability and affected the motility, increasing oxidative stress parameters, and inducing plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid bodies accumulation, and autophagic vacuoles formation. During the experimental schistosomiasis mansoni model, Bio AgNp restored body weight, reduced hepatosplenomegaly, and decrease the number of eggs and worms in feces and liver tissue. The treatment also ameliorates liver damage and reduces macrophage and neutrophil infiltrates. A reduction in count and size was evaluated in the granulomas, as well as a change to an exudative-proliferative phase, with a local increase of IFN-γ. Together our results showed that Bio-AgNp is a promising therapeutic candidate for studies of new therapeutic strategies against schistosomiasis.


Subject(s)
Metal Nanoparticles , Schistosomiasis mansoni , Schistosomicides , Animals , Humans , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Silver/pharmacology , Schistosoma mansoni
6.
Life Sci ; 319: 121530, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36863486

ABSTRACT

AIMS: Hepatocellular Carcinoma (HCC) is a primary neoplasm derived from hepatocytes with low responsiveness and recurrent chemoresistance. Melatonin is an alternative agent that may be helpful in treating HCC. We aimed to study in HuH 7.5 cells whether melatonin treatment exerts antitumor effects and, if so, what cellular responses are induced and involved. MAIN METHODS: We evaluated the effects of melatonin on cell cytotoxicity and proliferation, colony formation, morphological and immunohistochemical aspects, and on glucose consumption and lactate release. KEY FINDINGS: Melatonin reduced cell motility and caused lamellar breakdown, membrane damage, and reduction in microvillus. Immunofluorescence analysis revealed that melatonin reduced TGF and N-cadherin expression, which was further associated with inhibition of epithelial-mesenchymal transition process. In relation to the Warburg-type metabolism, melatonin reduced glucose uptake and lactate production by modulating intracellular lactate dehydrogenase activity. SIGNIFICANCE: Our results indicate that melatonin can act upon pyruvate/lactate metabolism, preventing the Warburg effect, which may reflect in the cell architecture. We demonstrated the direct cytotoxic and antiproliferative effect of melatonin on the HuH 7.5 cell line, and suggest that melatonin is a promising candidate to be further tested as an adjuvant to antitumor drugs for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Melatonin , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Melatonin/pharmacology , Melatonin/therapeutic use , Cell Line, Tumor , Lactates
7.
Exp Parasitol ; 241: 108343, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35944696

ABSTRACT

Toxoplasma gondii, a protozoan parasite, is responsible for toxoplasmosis. The available therapy for patients with toxoplasmosis involves a combination of pyrimethamine and sulfadiazine, which have several adverse effects, including bone marrow suppression, megaloblastic anemia, leukopenia, and granulocytopenia. The development of therapeutic alternatives is essential for the management of toxoplasmosis, emphasizing the recent advances in nanomedicine. This study aimed to evaluate the in vitro effects of biogenic silver nanoparticles (AgNp-Bio) on tachyzoite forms and Leydig cells infected with T. gondii. We observed that the AgNp-Bio reduced the viability of the tachyzoites and did not exhibit cytotoxicity against Leydig cells at low concentrations. Additionally, treatment with AgNp-Bio reduced the rate of infection and proliferation of the parasite, and lowered the testosterone levels in the infected cells. It increased the levels of IL-6 and TNF-α and reduced the levels of IL- 10. Among the morphological and ultrastructural changes, AgNp-Bio induced a reduction in the number of intracellular tachyzoites and caused changes in the tachyzoites with accumulation of autophagic vacuoles and a decrease in the number of tachyzoites inside the parasitophorous vacuoles. Collectively, our data demonstrate that the AgNp-Bio affect T. gondii tachyzoites by activating microbicidal and inflammatory mechanisms and could be a potential alternative treatment for toxoplasmosis.


Subject(s)
Metal Nanoparticles , Toxoplasma , Toxoplasmosis , Humans , Interleukin-6 , Leydig Cells , Male , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/toxicity , Silver/toxicity , Testosterone , Tumor Necrosis Factor-alpha
8.
Chem Biol Interact ; 361: 109969, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35526601

ABSTRACT

Leishmaniasis is a group of chronic parasitic diseases in humans caused by species of the Leishmania genus. Current treatments have high toxicity, cost, duration, limited effectiveness, significantly complex administration, and drug-resistant strains. These factors highlight the importance of research into new therapies that use drugs without toxic effects. Solidagenone (SOL), the main labdane diterpene isolated from the plant Solidago chilensis, has anti-inflammatory, gastroprotective, antioxidant, tissue repair-inducing effects, suggesting a role in novel drug development. This study investigates in vivo mechanism action of SOL treatment in L. amazonensis-infected BALB/c mice. SOL was isolated from the roots of S. chilensis, and L. amazonensis-infected mice were treated daily with SOL (10, 50, 100 mg/kg) by gavage for 30 days. Gastric (NAG, MPO), hepatic (AST, ALT), systemic (body weight, NO) toxicity, leishmanicidal activity (lesion size, parasite burden), cell profile (macrophage, neutrophil infiltration), antioxidant (ABTS, NBT, NO), oxidant parameters (FRAP, ABTS), Th1, Th2, Th17 cytokines (CBA), collagen deposition (picrosirius), arginase, iNOS, NF-kB, and NRF2 (immunofluorescence) were evaluated. In vivo results showed SOL-treatment did not induce gastric, hepatic, or systemic toxicity in L. amazonensis-infected mice. SOL was able to reduce the lesion size and parasite load at the site of infection, increasing macrophage infiltration and neutrophil migration, exerting a balance in antioxidant (increased ABTS, NBT reduction, and NO), oxidative (increased FRAP and ABTS), and anti-inflammatory responses (reduced TNF-α, IFN-γ and increased IL-6, IL-17 production), and inducing arginase, iNOS, NF-kB, NRF2 and collagen deposition (type III), favoring wound healing and accelerating tissue repair at the site injury.


Subject(s)
Furans , Leishmaniasis, Cutaneous , Naphthalenes , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Arginase/metabolism , Furans/pharmacology , Leishmania , Leishmaniasis, Cutaneous/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred CBA , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Naphthalenes/pharmacology , Wound Healing
9.
Microbes Infect ; 24(5): 104971, 2022.
Article in English | MEDLINE | ID: mdl-35341976

ABSTRACT

Owing to the serious adverse effects caused by pyrimethamine and sulfadiazine, the drugs commonly used to treat toxoplasmosis, there is a need for treatment alternatives for this disease. Nanotechnology has enabled significant advances toward this goal. This study was conducted to evaluate the activity of biogenic silver nanoparticles (AgNp-Bio) in RAW 264.7 murine macrophages infected with the RH strain of Toxoplasma gondii. The macrophages were infected with T. gondii tachyzoites and then treated with various concentrations of AgNp-Bio. The cells were evaluated by microscopy, and culture supernatants were collected for ELISA determination of their cytokine concentration. Treatment with 6 µM AgNp-Bio reduced the infection and parasite load in infected RAW 264.7 macrophages without being toxic to the cells. The treatment also induced the synthesis of reactive oxygen species and tumor necrosis factor-alpha (both pro-inflammatory mediators), which resulted in ultrastructural changes in the tachyzoites and their intramacrophagic destruction. Our findings suggest that AgNp-Bio affect T. gondii tachyzoites by activating microbicidal and pro-inflammatory mechanisms and may be a potential alternative treatment for toxoplasmosis.


Subject(s)
Macrophages , Metal Nanoparticles , Silver , Toxoplasmosis , Animals , Cell Proliferation , Macrophages/drug effects , Macrophages/parasitology , Mice , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Silver/pharmacology , Toxoplasma , Toxoplasmosis/drug therapy , Tumor Necrosis Factor-alpha/metabolism
10.
J Biomol Struct Dyn ; 40(17): 8040-8055, 2022 10.
Article in English | MEDLINE | ID: mdl-33769210

ABSTRACT

Leishmaniasis is a group of neglected diseases caused by parasites of the Leishmania genus. The treatment of Leishmaniasis represents a great challenge, because the available drugs present high toxicity and none of them is fully effective. Caryocar is a botanical genus rich in phenolic compounds, which leaves extracts have already been described by its antileishmanial action. Thus, we investigated the effect of pulp and peel extracts of the Caryocar coriaceum fruit on promastigote and amastigote forms of Leishmania amazonensis. Both extracts had antipromastigote effect after 24, 48, and 72 h, and this effect was by apoptosis-like process induction, with reactive oxygen species (ROS) production, damage to the mitochondria and plasma membrane, and phosphatidylserine exposure. Knowing that the fruit extracts did not alter the viability of macrophages, we observed that the treatment reduced the infection of these cells. Thereafter, in the in vitro infection context, the extracts showed antioxidant proprieties, by reducing NO, ROS, and MDA levels. Besides, both peel and pulp extracts up-regulated Nrf2/HO-1/Ferritin expression and increase the total iron-bound in infected macrophages, which culminates in a depletion of available iron for L. amazonensis replication. In silico, the molecular modeling experiments showed that the three flavonoids presented in the C. coriaceum extracts can act as synergistic inhibitors of Leishmania proteins, and compete for the active site. Also, there is a preference for rutin at the active site due to its greater interaction binding strength.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis , Malpighiales , Animals , Antioxidants/pharmacology , Antiprotozoal Agents/pharmacology , Ferritins/metabolism , Ferritins/pharmacology , Ferritins/therapeutic use , Flavonoids/pharmacology , Fruit , Humans , Iron/metabolism , Leishmaniasis/drug therapy , Malpighiales/metabolism , Mice , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , Phosphatidylserines/metabolism , Phosphatidylserines/pharmacology , Phosphatidylserines/therapeutic use , Reactive Oxygen Species/metabolism , Rutin/pharmacology , Rutin/therapeutic use
11.
Toxicol In Vitro ; 78: 105267, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34688839

ABSTRACT

Grandiflorenic acid (GFA) is one of the main kaurane diterpenes found in different parts of Sphagneticola trilobata. It has several biological activities, especially antiprotozoal action. In turn, Chagas disease is a complex systemic disease caused by the protozoan Trypanosoma cruzi, and the drugs available to treat it involve significant side effects and impose an urgent need to search for therapeutic alternatives. In this context, our goal was to determine the effect of GFA on trypomastigote and intracellular amastigote forms. Our results showed that GFA treatment led to significantly less viability of trypomastigote forms, with morphological and ultrastructural changes in the parasites treated with IC50 of GFA (24.60 nM), and larger levels of reactive oxygen species (ROS), mitochondrial depolarization, lipid droplets accumulation, presence of autophagic vacuoles, phosphatidylserine exposure, and plasma membrane damage. In addition, the GFA treatment was able to reduce the percentage of infected cells and the number of amastigotes per macrophage (J774A.1) without showing cytotoxicity in mammalian cell lines (J774A.1, LLCMK2, THP-1, AMJ2-C11), in addition to increasing TNF-α and reducing IL-6 levels in infected macrophages. In conclusion, the GFA treatment exerted influence on trypomastigote forms through an apoptosis-like mechanism and by eliminating intracellular parasites via TNF-α/ROS pathway, without generating cellular cytotoxicity.


Subject(s)
Antiprotozoal Agents/pharmacology , Diterpenes/pharmacology , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/toxicity , Asteraceae/chemistry , Cell Line , Chagas Disease/drug therapy , Diterpenes/toxicity , Humans , Immunomodulation/drug effects , Macaca mulatta , Macrophages/parasitology , Mice , Reactive Oxygen Species/metabolism , Trypanosoma cruzi/growth & development , Tumor Necrosis Factor-alpha/metabolism
12.
Chem Biol Interact ; 351: 109713, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34699765

ABSTRACT

Leishmaniasis is an infectious-parasitic disease caused by the protozoan Leishmania spp. The available treatments are based upon expensive drugs bearing adverse side-effects. The search for new therapeutic alternatives that present a more effective action without causing adverse effects to the patient is therefore important. The objective of this study was to evaluate the in vitro effect of botryosphaeran, a (1 â†’ 3)(1 â†’ 6)-ß-D-glucan, on the promastigote and intracellular amastigote forms of Leishmania amazonensis. The direct activity of botryosphaeran on promastigote forms was evaluated in vitro and inhibited proliferation, the IC50 7 µg/mL in 48 h was calculated. After 48 h treatment, botryosphaeran induced nitric oxide production (NO), caused mitochondrial membrane hyperpolarization, increased reactive oxygen species (ROS), and accumulation of lipid vesicles in promastigotes, resulting in apoptosis, necrosis and autophagy, and was accompanied by morphological and ultrastructural changes. The range of concentrations used did not alter the viability of peritoneal macrophages from BALB/c mice and erythrocytes of sheep. Botryosphaeran was able to reduce the number of infected macrophages and the number of amastigotes per macrophage at 12.5 µg/mL (50.75% ± 6.48), 25 µg/mL (55.66% ± 3.93) and 50 µg/mL (72.9% ± 6.98), and IC50 9.3 µg/mL (±0.66) for intracellular amastigotes forms. The leishmanicidal effect was due to activation of NF-κB and promoted an increase in pro-inflammatory cytokines (TNF-α and IL-6), iNOS and microbial-derived ROS and NO, in addition to decreasing the levels of SOD. Based upon the data obtained, we infer that botryosphaeran exerted an active leishmanicidal and immunomodulatory effect, acting on promastigotes through autophagic, apoptotic and necrosis processes, and in the intracellular amastigote form, through the action of ROS and NO.


Subject(s)
Apoptosis/drug effects , Glucans/pharmacology , Immunologic Factors/pharmacology , Leishmania/drug effects , NF-kappa B/metabolism , Trypanocidal Agents/pharmacology , Animals , Cell Proliferation/drug effects , Interleukin-6/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/microbiology , Male , Mice, Inbred BALB C , Necrosis/chemically induced , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress/drug effects , Parasitic Sensitivity Tests , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Curr Drug Metab ; 22(13): 1035-1064, 2021.
Article in English | MEDLINE | ID: mdl-34825868

ABSTRACT

The goal of the biotransformation process is to develop structural changes and generate new chemical compounds, which can occur naturally in mammalian and microbial organisms, such as filamentous fungi, and represent a tool to achieve enhanced bioactive compounds. Cunninghamella spp. is among the fungal models most widely used in biotransformation processes at phase I and II reactions, mimicking the metabolism of drugs and xenobiotics in mammals and generating new molecules based on substances of natural and synthetic origin. Therefore, the goal of this review is to highlight the studies involving the biotransformation of Cunninghamella species between January 2015 and March 2021, in addition to updating existing studies to identify the similarities between the human metabolite and Cunninghamella patterns of active compounds, with related advantages and challenges, and providing new tools for further studies in this scope.


Subject(s)
Biological Factors , Biotransformation , Cunninghamella/physiology , Xenobiotics , Biological Factors/metabolism , Biological Factors/pharmacology , Drug Discovery/methods , Fungi/physiology , Humans , Metabolism , Models, Biological , Xenobiotics/metabolism , Xenobiotics/pharmacology
14.
Front Cell Infect Microbiol ; 11: 687633, 2021.
Article in English | MEDLINE | ID: mdl-34660334

ABSTRACT

Cutaneous leishmaniasis is a zoonotic infectious disease broadly distributed worldwide, causing a range of diseases with clinical outcomes ranging from self-healing infections to chronic disfiguring disease. The effective immune response to this infection is yet to be more comprehensively understood and is fundamental for developing drugs and vaccines. Thus, we used experimental models of susceptibility (BALB/c) and partial resistance (C57BL/6) to Leishmania amazonensis infection to investigate the local profile of mediators involved in the development of cutaneous leishmaniasis. We found worse disease outcome in BALB/c mice than in C57BL/6 mice, with almost 15 times higher parasitic load, ulcerated lesion formation, and higher levels of IL-6 in infected paws. In contrast, C57BL/6 presented higher levels of IFN-γ and superoxide anion (•O2-) after 11 weeks of infection and no lesion ulcerations. A peak of local macrophages appeared after 24 h of infection in both of the studied mice strains, followed by another increase after 240 h, detected only in C57BL/6 mice. Regarding M1 and M2 macrophage phenotype markers [iNOS, MHC-II, CD206, and arginase-1 (Arg-1)], we found a pronounced increase in Arg-1 levels in BALB/c after 11 weeks of infection, whereas C57BL/6 showed an initial predomination of markers from both profiles, followed by an M2 predominance, coinciding with the second peak of macrophage infiltration, 240 h after the infection. Greater deposition of type III collagen and lesion resolution was also observed in C57BL/6 mice. The adoptive transfer of macrophages from C57BL/6 to infected BALB/c at the 11th week showed a reduction in both edema and the number of parasites at the lesion site, in addition to lower levels of Arg-1. Thus, C57BL/6 mice have a more effective response against L. amazonensis, based on a balance between inflammation and tissue repair, while BALB/c mice have an excessive Arg-1 production at late infection. The worst evolution seems to be influenced by recruitment of Arg-1 related macrophages, since the adoptive transfer of macrophages from C57BL/6 mice to BALB/c resulted in better outcomes, with lower levels of Arg-1.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Animals , Arginase , Macrophages , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
15.
Pathog Dis ; 79(6)2021 08 10.
Article in English | MEDLINE | ID: mdl-34347083

ABSTRACT

Leishmaniasis is a neglected tropical disease that affects millions of people around the world. Larval excretion/secretion (ES) of the larvae of flies of the Calliphoridae family has microbicidal activity against Gram-positive and Gram-negative bacteria, in addition to some species of Leishmania. Our study aimed at assessing the in vitro efficacy of Lucilia cuprina larval ES against the promastigote and amastigote forms of Leishmania amazonensis, elucidating possible microbicidal mechanisms and routes of death involved. Larval ES was able to inhibit the viability of L. amazonensis at all concentrations, induce morphological and ultrastructural changes in the parasite, retraction of the cell body, roughness of the cytoplasmic membrane, leakage of intracellular content, ROS production increase, induction of membrane depolarization and mitochondrial swelling, the formation of cytoplasmic lipid droplets and phosphatidylserine exposure, thus indicating the possibility of apoptosis-like death. To verify the efficacy of larval ES on amastigote forms, we performed a phagocytic assay, measurement of total ROS and NO. Treatment using larval ES reduced the percentage of infection and the number of amastigotes per macrophage of lineage J774A.1 at all concentrations, increasing the production of ROS and TNF-α, thus indicating possible pro-inflammatory immunomodulation and oxidative damage. Therefore, treatment using larval ES is effective at inducing the death of promastigotes and amastigotes of L. amazonensis even at low concentrations.


Subject(s)
Antiprotozoal Agents/pharmacology , Calliphoridae/chemistry , Larva/chemistry , Leishmania/drug effects , Leishmaniasis/therapy , Animals , Biological Therapy/methods , Bodily Secretions/chemistry , Cell Death/drug effects , Cell Line , Cell Membrane/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Humans , Leishmania/metabolism , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Vero Cells
16.
Immunol Lett ; 237: 58-65, 2021 09.
Article in English | MEDLINE | ID: mdl-34246712

ABSTRACT

Type 2 Diabetes is a chronic disease resulting from insulin dysfunction that triggers a low-grade inflammatory state and immune impairment. Leishmaniasis is an infectious disease characterized by chronic inflammation resulted from the parasite's immunomodulation ability. Thus, due to the delicate immune balance required in the combat and resistance to Leishmania infection and the chronic deregulation of the inflammatory response observed in type 2 diabetes, we evaluated the response of PBMC from diabetic patients to in vitro Leishmania amazonensis infection. For that, peripheral blood was collected from 25 diabetic patients and 25 healthy controls matched for age for cells extraction and subsequent experimental infection for 2 or 24 h and analyzed for phagocytic and leishmanicidal capacity by optical microscopy, oxidative stress by GSSG generation, labeling of intracellular mediators by enzyme-Linked immunosorbent assay, and cytokines measurement with cytometric beads array technique. We found that the diabetic group had a higher percentage of infected cells and a greater number of amastigotes per cell. Also, even inducing NF-kB phosphorylation and increasing TNF production after infection, cells from diabetic patients were unable to downregulate NRF2 and generate oxidative stress, which may be associated with the exacerbated levels of IL-6 observed. PBMC of diabetic individuals are more susceptible to infection by L. amazonensis and fail to control the infection over time due to the inability to generate effector microbicidal molecules.


Subject(s)
Cytokines/physiology , Diabetes Mellitus, Type 2/immunology , Leishmania mexicana/pathogenicity , Leishmaniasis, Cutaneous/etiology , Leukocytes, Mononuclear/parasitology , NF-E2-Related Factor 2/deficiency , Aged , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Disease Susceptibility , Female , Glutathione/blood , Glycated Hemoglobin/analysis , Humans , Immunocompetence , In Vitro Techniques , Inflammation , Interleukin-6/physiology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Male , Middle Aged , NF-E2-Related Factor 2/physiology , Nitric Oxide/metabolism , Oxidative Stress , Respiratory Burst , Tumor Necrosis Factor-alpha/physiology
17.
Acta Trop ; 222: 106070, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34331897

ABSTRACT

Toxoplasma gondii is a protozoan parasite that can cause severe and debilitating diseases, especially in immunocompromised individuals. The available treatment is based on drugs that have low efficacy, high toxicity, several adverse effects, and need long periods of treatment. Thus, the search for therapeutic alternatives is urgently needed. Biogenic silver nanoparticles (AgNp-Bio) have been associated with several biological effects, as antiproliferative, pro-apoptotic, antioxidant, antiviral, antifungal, and antiprotozoal activity. Thus, the objective was evaluating AgNp-Bio effect on HeLa cells infected with T. gondii (RH strain). First, nontoxic AgNp-Bio concentrations for HeLa cells (1.5 - 6 µM) were determined, which were tested on cells infected with T. gondii. A significant reduction in infection, proliferation, and intracellular parasitic load was observed, also an increase in ROS and IL-6. Additionally, the evaluation of the action mechanisms of the parasite showed that AgNp-Bio acts directly on tachyzoites, inducing depolarization of the mitochondrial membrane, ROS increase, and lipid bodies accumulation, as well as triggering an autophagic process, causing damage to the parasite membrane, and phosphatidylserine exposure. Based on this, it was inferred that AgNp-Bio affects T. gondii by inducing immunomodulation and microbicidal molecules produced by infected cells, and acts on parasites, by inducing autophagy and apoptosis.


Subject(s)
Autophagy , Metal Nanoparticles , Silver , Toxoplasma , Toxoplasmosis , Apoptosis , Cell Proliferation , HeLa Cells , Humans , Silver/pharmacology
18.
Parasitology ; 148(12): 1447-1457, 2021 10.
Article in English | MEDLINE | ID: mdl-34187608

ABSTRACT

Toxoplasma gondii is the causative agent of toxoplasmosis, and an important problem of public health. The current treatment for toxoplasmosis is the combination of pyrimethamine and sulphadiazine, which do not act in the chronic phase of toxoplasmosis and have several side-effects. This study evaluated the anti-T. gondii activity and potential mechanism of Moringa oleifera seeds' aqueous extract in vitro. The concentration of M. oleifera extract in HeLa cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assays. The presence of T. gondii was assessed by quantitative polymerase chain reaction and toluidine blue staining. Pyrimethamine and sulphadiazine were used as drug controls. Modifications in T. gondii morphology and ultrastructure were observed by electron microscopy. In vitro, the M. oleifera extract had no toxic effect on HeLa cells at concentrations below 50 µg mL−1. Moringa oleifera extract inhibits T. gondii invasion and intracellular proliferation with similar results for sulphadiazine + pyrimethamine, and also shows cellular nitric oxide production at a concentration of 30 µg mL−1. Electron microscopy analyses indicated structural and ultrastructural modifications in tachyzoites after treatment. We also observed an increase in reactive oxygen species production and a loss of mitochondrial membrane integrity. Nile Red staining assays demonstrated a lipid accumulation. Annexin V­fluorescein isothiocyanate and propidium iodide staining demonstrated that the main action of M. oleifera extract in T. gondii tachyzoites was compatible with late apoptosis. In conclusion, M. oleifera extract has anti-T. gondii activity in vitro and might be a promising substance for the development of a new anti-T. gondii drug.


Subject(s)
Moringa oleifera , Toxoplasma , Toxoplasmosis , Apoptosis , HeLa Cells , Humans , Moringa oleifera/chemistry , Toxoplasmosis/drug therapy
19.
Acta Trop ; 221: 106018, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34157292

ABSTRACT

Leishmania (Leishmania) amazonensis is an important etiological agent of American cutaneous leishmaniasis (ACL) in Brazil. The species causes a large spectrum of clinical manifestations in humans and dogs, ranging from cutaneous, cutaneous diffuse, mucocutaneous, and visceral involvement, however, the factors that drive the development of different disease forms by the same species are not yet fully known. In the present work, it was systematically reviewed the studies addressing phenotypic and genotypic characteristics of Leishmania (L.) amazonensis isolates causing cutaneous and visceral clinical frames in humans and dogs, comparing the results observed. For this, four research databases were searched for the following keywords: (Leishmania amazonensis AND visceral leishmaniasis) AND (tropism OR virulence OR visceralization OR adaptations OR mutation OR clinical presentation OR resistance OR survival OR wide spectrum). The results revealed that the complexity disease seems to involve the combination of genetic factors of the parasite (as modifications in molecules related to the virulence and metabolism) and also of the host's immune background and status. Nonetheless, the exact mechanism that leads to different clinical manifestations between strains of the same species is still uncertain and future studies must be developed to better elucidate this phenomenon.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis, Mucocutaneous , Leishmaniasis, Visceral , Animals , Dogs , Genotype , Humans , Leishmania/genetics , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/veterinary , Leishmaniasis, Mucocutaneous/immunology , Leishmaniasis, Mucocutaneous/veterinary , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/veterinary , Phenotype
20.
Phytomedicine ; 85: 153536, 2021 May.
Article in English | MEDLINE | ID: mdl-33765552

ABSTRACT

BACKGROUND: Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Currently, the treatment has limited effectiveness and high toxicity, is expensive, requires long-term treatment, induces significant side effects, and promotes drug resistance. Thus, new therapeutic strategies must be developed to find alternative compounds with high efficiency and low cost. Solidagenone (SOL), one of the main constituents of Solidago chilensis, has shown gastroprotective, anti-inflammatory and immunomodulatory effects. PURPOSE: This study assessed the in vitro effect of SOL on promastigotes and Leishmania amazonensis-infected macrophages, as well its microbicide and immunomodulatory mechanisms. METHODS: SOL was isolated from the roots of S. chilensis, 98% purity, and identified by chromatographic methods, and the effect of SOL on leishmanicidal activity against promastigotes in vitro, SOL-induced cytotoxicity in THP-1, J774 cells, sheep erythrocytes, and L. amazonensis-infected J774 macrophages, and the mechanisms of death involved in this action were evaluated. RESULTS: In silico predictions showed good drug-likeness potential for SOL with high oral bioavailability and intestinal absorption. SOL treatment (10-160 µM) inhibited promastigote proliferation 24, 48, and 72 h after treatment. After 24 h of treatment, SOL at the IC50 (34.5 µM) and 2 × the IC50 (69 µM) induced several morphological and ultrastructural changes in promastigotes, altered the cell cycle and cellular volume, increased phosphatidylserine exposure on the cell surface, induced the loss of plasma membrane integrity, increased the reactive oxygen species (ROS) level, induced loss of mitochondrial integrity (characterized by an apoptosis-like process), and increased the number of lipid droplets and autophagic vacuoles. Additionally, SOL induced low cytotoxicity in J774 murine macrophages (CC50 of 1587 µM), THP-1 human monocytes (CC50 of 1321 µM), and sheep erythrocytes. SOL treatment reduced the percentage of L. amazonensis-infected macrophages and the number of amastigotes per macrophage (IC50 9.5 µM), reduced TNF-α production and increased IL-12p70, ROS and nitric oxide (NO) levels. CONCLUSION: SOL showed in vitro leishmanicidal effects against the promastigotes by apoptosis-like mechanism and amastigotes by reducing TNF-α and increasing IL-12p70, ROS, and NO levels, suggesting their potential as a candidate for use in further studies on the design of antileishmanial drugs.


Subject(s)
Apoptosis/drug effects , Furans/pharmacology , Leishmania/drug effects , Macrophages/drug effects , Naphthalenes/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Cell Line , Humans , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Mitochondria/pathology , Nitric Oxide/metabolism , Phosphatidylserines/metabolism , Plant Roots/chemistry , Reactive Oxygen Species/metabolism , Sheep , Solidago/chemistry , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...